ELECTROCHEMICAL PROCESSES FOR
WATER TREATMENT:
ELECTROREDUCTION AND
ELECTROSORPTION

Focus of today’s lecture

* Electroreduction and indirect oxidation
processes, and their use for groundwater
treatment

* Electrosorption: Salts removal for water
desalination (process called Capacitive
Deionization or CDI) and organics removal
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PROCESSES DRIVEN BY FARADAIC
REACTIONS AT THE CATHODE

Faradaic reactions

Occur when charges (e.g., electrons) are

transferred across the metal-solution interface.

Electron transfer causes oxidation or reduction

to occur (these are governed by Faraday Law’s).

Give few examples?

When it comes to electrochemical
transformation/removal of water pollutants...
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Direct and indirect degradation
processes induced by Faradaic

Oxidation Reduction
e
Direct Direct
— (electrolysis) —— (electrolysis)
at the anode at the cathode
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 SEE——
Indirect Indirect
— mediated by —— mediated by
anode cathode
Indirect Indirect
— mediated by — mediated by
cathode anode
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INDIRECT REDUCTION MEDIATED
BY CATHODE
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Hydrodechlorination or HDC

* e.g. tetrachloroethylene, thrichloroethylene,
chlorophenol, chlorobenzene

HO @(

B |
HO €23 HCI I
Fe2t
H*
HO @(Tl’qﬁio (= >C k

Reaction zone at 2e”
Fe-Pd interface ReEnhairaie

Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water

electrolysis (hydrogen evolution reaction or HER).

Step 1: Process starts with electrochemical hydrogen adsorption (Volmer reaction) where atomic

hydrogen (H,) is chemically adsorbed on active site of the electrode surface (M)

H* + M +e = M—H" (acid solution)

H,O0 + M +e = M-H" + OH (alkaline solution)
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Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water
electrolysis.

Step 2: The H, further involves in electrochemical desorption (Heyrovsky reaction)

M-H* + H" + e = M + H, (acid solution)

M-H* + H,O + ¢ = M + OH  + H, (alkaline solution)

Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water
electrolysis.

Step 2: OR chemical desorption (Tafel reaction) to create hydrogen gas or interacts with the
reducible molecules like chlorinated substances, which leads to HDC.

2M—H* = 2M + H, (both acid and alkaline solutions)
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Influence of cathode
material

descending

The good HDC catalyst
should have strong bond
with H_ to allow proton-
electron transfer process
but weak enough to
ensure the bond breaking
and the product release.
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What has major effect on HDC?

TEfﬂuent

= No Pd
== (.76 mgPd cm2
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Same cathodes and process but for

different contaminant removal?
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PRACTICAL APPLICATIONS

15

Approach 1

{Ln

GROUND WATER CIRCULATION
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Approach 2
In Situ Electrodes %"
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Results

Anode: GHCl; + 1BH,0 — 2C0y,g + 6e~ + 3CI7 + 9H;0™
Cathode: C;HCI; + 10e” + 7H;0 — 2CHyuq + 3CI 4 7OH
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Over 90% degradation of TCE can be
achieved without formation of DCE or VC
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Another effect on HDC?

Competitive reactions: O, reduction!
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INDIRECT OXIDATION MEDIATED BY
CATHODE

25

Indirect oxidation processes

Cathodes can support formation of H,0, via 2-
electron O, reduction reaction (2e ORR)

Agueous and gaseous

contaminants
Z-glectron ORR activation
0, > H,0, » -OH
Cabonbased cathodes, Oxidized/degraded
W rarton et Fe, nonFe metals, UV, producs
modted catrades hatere utasond Fe0d,
torms doped carbon Mg, ¢Ce Aqueous phase Gaseols phase
canndes, metal conies carbon catalyaty o - -
decorated carbon canodes
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Cathode material

Activated Carbons Powder G'ranuLar Pellets

Cathode material

Carbon black
Introducing other Acetylene black
active carbon 5 Carbon nanotubes (CNTs)
materials
Graphene
Chemical oxidation
. (H; 0, Fenton reagent, HNO,, etc)
O-doping
Modification . N-doping Electrochemical oxidation
ofcarbon < Doping with Ll
hetero-atoms F-doping
cathodes
B-doping
Mo,
TayOs

Introducing metal < v 0,
oxides
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Cathode material

Modifications: heteroatom-doping (i.e. oxygen-
containing functional groups)

(o] (1 [)
CH — AN Cc0H — =0 —> 4—COOH —>F—H +CO,

Oxidation by
dissolved oxygen

I Hydrogen peroxide generation
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Cathode material

Aqueous and gaseous
contaminants

Z-glectron ORR - activation
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Part 2

ELECTROSORPTION: SALTS REMOVAL
FOR WATER DESALINATION (PROCESS
CALLED CAPACITIVE DEIONIZATION OR
CDI) AND ORGANICS REMOVAL
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Electrosorption

Surface plane
Inner Helmholtz plane
Outer Helmhaliz plane
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* Charge separates across the interface, resulting in the formation of strong electrical double
layers (EDL) near the high conductivity and high surface area surfaces. When the electrode is
charged and put into a solution with ions, the interface of the charged electrode and ions rich
solution will be occupied with counter ions as a result of the Coulomb force, forming EDL.

*  Under some conditions, a given electrode-solution interface will show a range of potentials where no
charge-transfer reactions occur because such reactions are thermodynamically or kinetically unfavorable.
Charge does not cross the interface but external currents can flow!
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Electrosorption

Adsorbent/precursor Adsorbate Maximum adsorption capacity (mg/g)
Activated carbon fibers (commercial) Acid Orange 7 dye 644.59
Polyacrylonitrile resin Phenol 225.86
Activated carbon fibers (commercial) Naphthalenesulfonic acid 320,00

Benzyl alcohol 210,00

Naphthoic acid 200.00
Activated carben cloth (commercial) Bentazone 3047
Spectracarb 2225 (commercial ) Chromium (V1) 7.28
Activated carbon fibers (commercial) Phenoxide ions 207.04

p-Nitrophenol 407,59

Sodium dodecylbenzene sulfonate TE6.66
Activated carbon fibers (commercial) Uranium 5.02
Polyacrylo resin Aniline 315N
Polyacrylonitrile resin m-Cresol 367.68
MNFEN 12915 (commercial) Metribuzin pesticide 210,00
Spectracarb 2225 (commercial ) Nitrare 112

Nitrite 0.83
Coconut charcoal Phenol 188.00
Spectracarb 225 (commercial) Ethyl xanthate 1120.55

Thiocyanate 823.25
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Electrosorption
Accelerating the adsorption rate  Ability for regeneration
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Capacitive deionization or CDI

Current Collector Upon applying a voltage difference
— Porous Carbon Electrode — between two porous carbon
electrodes, ions are attracted to the
oppositely charged electrode.

electrical
current
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Mechanism Non-Faradaic Effects Faradaic Reactions
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Types of reactors
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